An enhanced system for unnatural amino acid mutagenesis in E. coli.

نویسندگان

  • Travis S Young
  • Insha Ahmad
  • Jun A Yin
  • Peter G Schultz
چکیده

We report a new vector, pEVOL, for the incorporation of unnatural amino acids into proteins in Escherichia coli using evolved Methanocaldococcus jannaschii aminoacyl-tRNA synthetase(s) (aaRS)/suppressor tRNA pairs. This new system affords higher yields of mutant proteins through the use of both constitutive and inducible promoters to drive the transcription of two copies of the M. jannaschii aaRS gene. Yields were further increased by coupling the dual-aaRS promoter system with a newly optimized suppressor tRNA(CUA)(opt) in a single-vector construct. The optimized suppressor tRNA(CUA)(opt) afforded increased plasmid stability compared with previously reported vectors for unnatural amino acid mutagenesis. To demonstrate the utility of this new system, we introduced 14 mutant aaRS into pEVOL and compared their ability to insert unnatural amino acids in response to three independent amber nonsense codons in sperm whale myoglobin or green fluorescent protein. When cultured in rich media in shake flasks, pEVOL was capable of producing more than 100 mg/L mutant GroEL protein. The versatility, increased yields, and increased stability of the pEVOL vector will further facilitate the expression of proteins with unnatural amino acids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli.

To site-specifically incorporate an unnatural amino acid (UAA) into target proteins in Escherichia coli, we use a suppressor plasmid that provides an engineered suppressor tRNA and an aminoacyl-tRNA synthetase (aaRS) specific for the UAA of interest. The continuous drive to further improve UAA incorporation efficiency in E. coli has resulted in several generations of suppressor plasmids. Here w...

متن کامل

Site-Directed Mutagenesis, Expression and Biological Activity of E. coli 5-Enolpyruvylshikimate 3-Phosphate Synthase Gene

Site-directed mutagenesis (SDM) as a powerful technique was used to change two important and conserved amino acids in 5-enolpyruvylshikimate 3- phosphate synthase (EPSPS) gene of E. coli. The mutations changed glycine 96 to alanine and alanine 183 to threonine. These two amino acids are very important for intraction of the wide spectrum herbicide, glyphosate, to EPSP synthase enzymes. By design...

متن کامل

Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo.

In an effort to expand the scope of protein mutagenesis, we have completed the first steps toward a general method to allow the site-specific incorporation of unnatural amino acids into proteins in vivo. Our approach involves the generation of an "orthogonal" suppressor tRNA that is uniquely acylated in Escherichia coli by an engineered aminoacyl-tRNA synthetase with the desired unnatural amino...

متن کامل

Improving orthogonal tRNA-synthetase recognition for efficient unnatural amino acid incorporation and application in mammalian cellswz

Unnatural amino acids have been genetically encoded in Escherichia coli, yeast, and mammalian cells using orthogonal tRNA–synthetase pairs and unique codons. This technology enables novel chemical and physical properties to be selectively introduced into proteins directly in live cells, and thus have great potential for addressing molecular and cell biological questions in the native cell setti...

متن کامل

A Single Point Mutation within the Coding Sequence of Cholera Toxin B Subunit Will Increase Its Expression Yield

Background: Cholera toxin B subunit (CTB) has been extensively considered as an immunogenic and adjuvant protein, but its yield of expression is not satisfactory in many studies. The aim of this study was to compare the expression of native and mutant recombinant CTB (rCTB) in pQE vector. Methods: ctxB fragment from Vibrio cholerae O1 ATCC14035 containing the substitution of mutant ctxB for ami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 395 2  شماره 

صفحات  -

تاریخ انتشار 2010